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Improvements in the transverse properties

of composites
Part 1

Fracture surface energy and mechanism of transverse

fracture in glass fibre composites

G. MAROM, E. F. T. WHITE

Department of Polymer and Fibre Science, The University of Manchester Institute of Science

and Technology, Manchester, UK

Fracture surface energies of initiation (y1¢) foratransverse fracture process in glass-reinforced
epoxy composites have been measured and the results calculated by three different treatments
and are compared with the average fracture surface energies (y:°) for the complete fracture

process.

Changes in these two fracture properties are studied as a function of the volume fraction
of the fibres, and the relation between the surface energies is established as a factor which
determines the nature of the fracture process. When y1° — y¢ > 0 a catastrophic failure is
expected, whereas a controlled fracture is observed for y1¢ — ¥ < 0.

1. Introduction

Fracture processes in composite materials
require a greater understanding, if these materials
are to be used for engineering purposes. Com-
posites to be used at the highest level of properties
must necessarily be constructed of highly
aligned fibrous reinforcement, and it is this
measure of alignment that contributes to their
high stiffnesses and strength in the fibre direction.
Such reinforcement, however, confers poor
stiffness, strength and crack growth resistance
to stresses in the transverse direction.

The process of fracture in fibrous composite
materials will generally involve an initiation
process, in which the crack first develops. This
first-formed initial crack may subsequently
behave in three possible ways. It may (i) remain
stable; (ii) grow in a steady controlled fashion;
or (ili) propagate catastrophically leading to
immediate rupture of the sample. The relative
energies, required for the initiation and con-
tinued growth of the first-formed crack, the
stress geometry and the material properties
determine which of the above processes will
occur.

Fracture in a fibre-reinforced composite can
include the creation of three types of fracture
face, namely: (i) creation of new matrix surface
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due to growth of the crack through pure matrix
zones; (i) formation of new end-surfaces of
fibres due to fibre breakages; (iii) development
of new surface of matrix and fibres due to
fracture of the interface and subsequent de-
bonding of fibres from the matrix. It should be
noted that the energies required to create a new
matrix surface by debonding at the interface,
may be different from those required to create a
matrix failure surface. The latter may involve
considerable plastic deformation and con-
sequent high fracture surface energy, whereas
failure in the interfacial region need not neces-
sarily involve plastic flow in the matrix. There
are several conventional test methods for
evaluating the transverse strength of wuni-
directional composites, for example, by meas-
uring the transverse flexural strength, or by
measuring the shear strength [1]. These methods
often measure structural properties which are
dependent on the type and geometry of specimen,
and do not measure a basic parameter that is
applicable to all test methods. However, it has
been postulated [2] that the fracture surface
energy (or the strain-energy release rate) is a
bulk property of the material and thus is
independent of the specimen configuration. It
seems reasonable therefore to use the methods
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of fracture mechanics to measure the fracture
surface energy as a means of analysing the
failure behaviour of composites.

Generally, the fracture surface energy, y is
defined as the work required to create unit area
of fracture face, irrespective of the type or types
of new surface comprising the fracture face, or
of its microscopic shape. A distinction is often
made [3] between two values of y: y;, the value
of y used in the Griffith equation [4], and yg,
the value averaged over the whole fracture
process. y1 is related to the stain—energy release
rate at the instant of fracture by —(2U/04) = yr,
where A4 is the area of the new fracture face,
whereas yy is related to the total energy which
is dissipated in the complete fracture process by
vr = UJA. For a given material yr and yy are
not necessarily the same.

It is of interest to establish the relation
between yr and yy along the whole range of the
volume fraction of the fibres, as this relation
governs the nature of the fracture process, that
is whether fracture proceeds catastrophically
or in a controlled fashion.

2. Specimen preparation and testing

“Araldite” (CIBA Ltd) epoxy resin MY.750,
cured by the hardener HT.972 was used as the
resin for all specimen preparations. E-glass fibres
in the form of 408 strand rovings without
surface treatment were used for the reinforce-
ment. Pure resin was cast in a 10 x 10 cm open
mould to produce plates of 0.5 ¢cm thickness.
Composites were made by close winding the
glass rovings at a density of 10 turns per 1 cm
width on a winding machine drum (26 cm
diameter) to form 10 cm wide strips. These were
impregnated with an acetone solution of the
resin, cut into 10 x 10 cm flat sheets and
moulded in a three plate mould under 100 psi.
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pressure at 170°C to form 0.5 cm thick sheets.
The volume fraction of the fibres was controlled
by the number of “pre-preg” sheets introduced
into the mould, and by the amount of resin
squeezed out in the moulding process. The
moulding plates were cut into specimens of the
form of 0.5 cm square-section bars, 4.5 cm long.
Cuts to a depth of ¢, equal to multiples of one
tenth of the beam thickness, were made at the
centre of each bar (Fig. la). In specimens of
pure matrix a scratch was made at the bottom
of the cut, similar to a method described for
metals [5] in order to diminish plastic deform-
ation, and to reduce the scatter of the results.
In the composites the fibre direction was as
indicated in Fig. 1b. The specimens were tested
in three-point bending on an Instron machine
at crosshead speed of 0.05 c¢m/min. Typical
load-deflection curves are shown in Fig. 2.

3. Transverse strength

Cooper and Kelly [6] and Gerberich [7] suggest
that in the case of no interfacial contribution
Equation 1 applies:

o = om[l — J(@4Vi/m)] 1)

where ¢ is the transverse strength of the com-
posite, o is the strength of the matrix and V3 is
the volume fraction of the fibres. This function
is shown in Fig. 3 for om = 120 MN/m?.
Equation 1 was developed for the case of fibres
being packed in a square array in the resin, oi°
becomes zero for Vi = 0.79 - a situation in
which the fibres would be in contact throughout.
For fibre-matrix interfacial strength greater
than zero the “law of mixtures” is applied giving
the following result.

ot = om[l — J@Vi/m)] + o1 J(@Vi/m) ()

where oj is the tensile stress necessary to separate
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Figure 1 (a) The specimen geometry. (b) The fibre direction in regard to the specimen geometry and the

mode of loading.
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Figure 2 Typical load-deflection curves for specimens of
c/d = 0.4, indicating load and deflection at fracture and
total fracture energy. (a) Pure matrix; (b) Composite,
V: = 0.27; (¢) Composite, V; = 0.45.

the fibre from the matrix under transverse
loading.

Similarly, it is possible to develop an equation
for the case of hexagonal array of the fibres in
the matrix arranged as in Fig. 4. Here we
assume the crack grows in the matrix by the
shortest path {2, 8]. For hexagonal arrange-
ment of the fibres in the matrix the inter-fibre
spacing, A, and the centre-to-centre fibre spacing,
A’, are given in terms of the fibre radius, r, and
V1 by the following equations:

A= 2r{[m/2J3VD)], A = 2r{[7/(2y3VD)] — 2r
€)

When the fibre-matrix interfacial strength is
zero, the transverse strength is reduced by the
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Figure 3 Transverse flexural strength of the composites
as a function of the volume fraction. A comparison of
experimental results with various theoretical expressions.

ratio Am/4 = A/X, where Apn is the matrix
area and 4m/A is the matrix area fraction.

NX =1 = JI@2y3V)/r] (4)
om{l — JI2{3VD)/n]} ®)
Equation 5 is shown plotted in Fig. 3. Now,
ot¢ becomes zero at ¥y = 0.906 (close hexagonal
array).

For fibre-matrix interfacial strength greater
than zero the “law of mixtures”” may be applied
giving the following:
om{l — JI@3M)7]} + o

JI23VD)/m) (6)
ot® values for samples tested in bending
experiments are shown in Fig. 3. Substitution
of the experimental results into Equation 6 gave
an average value for o3 of 5 MN/m?
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Figure 4 A schematic transverse fracture path in a com-
posite of hexagonal array fractured in a bending mode.
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4. Fracture surface energy of initiation
4.1. Determination of y1

Various approximations can be used for cal-
culating the yr values from the experimental
results. Three of these methods were used in this
work, and the results were compared.

The first approximation is the compliance
method [9, 10]. It is based on the fact that at
the instant of fracture initiation y; = —(0U/0A4);
where A is the total area of the cut. Taking
U = Pypdg/2 = k 85%2 and (0U/ok) = 85?2 it
can be shown that
oS¢ Ok
2 o4
k and & are described in Fig. 2.

The term 0k/0A can be determined experi-
mentally by measuring the stiffness of specimens,
containing a range of crack areas, and then
measuring the appropriate slope of a plot of k
as a function of 4. It is important to note that
this approximation does not consider the shape
or the geometry of the specimen, or the change
from plane-strain to plane-stress conditions
with increasing c¢/d ratio.

The second approximation is based on stress
intensity factor (Kr) calibrations [11-13]. The
term K7 describes the external loading and the
geometries of the crack and of the specimen, it
has been shown by Irwin [14] that y1 and K are
related by K;* = 2FEyr, where E is the transverse
Young’s modulus of the composite. Ky is often
expressed by a geometrical term, Y, which is
¢/d dependent. For three-point bending speci-
mens Y = Kibd?/6Mc*, where M is the applied
bending moment which for a rectangular bar
I8 M = opbd?6, and or = 3Pgl/2bd? is the
fracture stress. Hence

Q)

Y= -

Y2 UFZ c

Vs = o (®)

Brown and Srawley [11] expressed Y to
within 0.29 by fourth-degree polynomials of
the form

Y = Ay + Ai(c/d) + Ay(c/dp? + Ay(c/d)?

+ Aylc/d)~
For l/d = 8, A has the following values:
Ay = + 196, 4, = — 2.75, A, = + 13.66,
Az = — 2398, 4; = + 25.22. The calculated

values of ¥ used in this work are shown in
Table 1.

The third approximation is based on applying
a correction to the Griffith equation for plane-
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TABLE I Values of f(c/d) and of Y as a function
of ¢/d

c/d 0.1 0.2 0.3 04 0.5 0.6
fle/d) 023 036 041 043 043 043
Y 1.80 1.81 193 258 332

2.16

strain conditions, i.e. y1 = (1 — v?) 7 ox%/2F

where v is the appropriate Poisson’s ratio. Such

a correction will allow for a wider range of

c/d, i.e. plane stress as well as plane strain

conditions. For convenience, the corrected

Griffith equation is often [5, 15] presented in the
9 (1 — v®)Pg22

form:
c
BB — o/ <d> )

where f(c/d) is a dimensionless function of ¢/d.
At small ¢/d values f(c/d) = = c¢(d — ¢)*/d*, and
the equation reduces to the original Griffith
equation. The values of f(c/d) were calculated
by various mathematical treatments. Table I
shows the results of one of these treatments [3]
made for four-point-bending specimens.

All three approximations described above
were used for determining y1¢ from the experi-
mental results. The values of f(c/d) used in the
calculation, were the values for four-point-
bending specimens, shown in Table I, with an
error of less than 109/ [5]. The factor (1 — ¥?)
which is an approximation [5] was taken to
equal 1. The transverse Young’s moduli for all
samples were determined by three-point-bending
tests of the un-notched beams, using the
equation £ = k [3/4bd® (ASTM D.790). The
experimental results for the appropriate modulus
E are shown in Fig. 5. The results for y1° from
these results are summarized in Table II. As
mentioned previously in Section 2 the results
for the pure matrix were highly dependent on
the nature of the cut, and the final value of y™
was, therefore, determined from the average of
three sets of results, with a scatter of ~409,.
The yr™ results in Table II are of one of these
sets.

All specimens of pure matrix exhibited
catastrophic fracture for every c¢/d. Un-notched
specimens and those containing shallow cuts of
composites of ¥y = 0.27 — in which a relatively
high energy was built up before fracture
occurred — also failed in a catastrophic fashion,
resulting two pieces which were being held
together by a few misaligned fibres. The energy

YIz =
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Figure 5 Transverse Young’s moduli of the composites
as a function of the volume fraction compared with the
theoretical lower bound.

required to accomplish the separation of the
two pieces was not recorded when using the
initial scale sensitivity of the Instron machine.
Specimens of the rest of the tested composites
for every c/d exhibited controlled fracture. It is
obvious that almost similar values of y1¢ were
obtained by using the second and the third
approximations. These values were in very good
agreement with the values of y1® obtained by
applying the compliance method to the experi-
mental results. As the compliance method is
the only one out of these three, which does not
take into account the geometry of the specimens,
the final value of y1¢ for every c¢/d was calculated
by taking an average yi® using the following
formula:

vi© = [n® + yu%2 + yul/2.
In this way, a single value of yi° for every value
of ¢/d was obtained. The final results show a

consistent variation of y1° as a function of ¢/d
for most of the samples. This variation is
illustrated in Fig. 6. Since it is obvious that the
results of yr¢ for c/d values in the range of
0.2 < ¢/d < 0.6 are very similar, and as this
test has been previously recommended [5, 12]
to be carried out for low values of c/d, the
average vr° taken over the range 0.2 <C ¢/d < 0.6
was therefore calculated for every tested Vi to
be the surface fracture energy. The results are
shown in Fig. 7.

4.2. y1¢ as a function of V,

Gerberich [7] — basing his considerations on the
existence of high plastic deformation zones in
the immediate vicinity of the fracture, and by
calculating the volume of the matrix material
involved in plastic energy dissipation — suggests
that for a square array of the fibres, and for a
zero interfacial area

y1¢ = 20 en ¥ [(m/4V)— 1] (10)

where on, 1s the nominal fracture stress and em
is the true fracture strain. A comparison of
Equation 10 - substituting em == om/Em and
using om = 120 MN/m? Ep = 2.9 GN/m2, and
2r 15.2 x 10-®m (as measured) with the
experimental observations is shown in Fig. 7.
A different approach to this problem is to
adopt the same considerations used for oi°.
Assuming that there is no fibre breakage during
the fracture initiation along the fibre direction,
only two of the three possible fracture-face
types are formed, and therefore, only y1™ and
yi' — the fracture surface energy of initiation of
the matrix and interface respectively — will
contribute to the final value of y1°. The con-
tribution depends on the proportion of each type
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Figure 6 The values of fracture surface energy of initiation (y°r) of a composite of ¥y = 0.52 as a function of ¢/d.
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Figure 7 The experimental values of fracture surface
energy of initiation as a function of ¥}, compared with
various theoretical relations.

of fracture, which itself depends on V; and on
the arrangement of the fibres in the matrix
(random, hexagonal, square). From energy
consideration the following applies:

y1° A4 = y™ Am + yp 4 (1)
where A and A4; are the matrix and the interface
area respectively.

i

A
+ A (12)

Am

¢ — o
YI Y1 Y

By analogy to Section 3 and Equations 2 and 6

we obtain for a square array that

yi¢ =y [1 — J@Vi/m] + yit[J(@Vi/m)] (13)

and for hexagonal array

yi® =y [1 — J23Vi/m)] + yd [ V(243 Vf{ﬂ)])
14

Equations 13 and 14 are shown in Fig. 7 for

yi® = 0.73 kJ/m? and y{ = 0.

By extrapolating the experimental results to
V: = 0.906 we find that y,* ~ 0.015 kJ/m?2,

5. The average fracture surface

energy, yr°

5.1. Determination of yz°

When a specimen fractures catastrophically, a
curve of the type shown in Fig. 2a is recorded
on the Instron. Controlled fracture leads to
curves of the type shown in Figs. 2b and ¢ [16].
In this case, all the elastic strain energy stored
in the specimen during the testing and all the
energy stored in the Instron machine, are con-
verted into fracture surface energy. No losses,
e.g. conversion into kinetic energy are incurred.
In this situation, the area under the curve is

TABLE III y¥® values of the composites
Vi 027 037 045 052 0.67

0.76

c/d yr¢ (10% J/m*)
0.1 4.4 4.7 5.2 24 1.9 1.2

0.2 3.4 3.2 3.1 2.1 1.4 0.91
0.3 3.3 3.7 3.0 2.1 1.6 085
0.4 3.2 3.5 3.6 1.8 1.2 0.66
0.5 3.5 2.6 2.0 1.7 093  0.61
0.6 3.0 3.1 2.6 1.6 082 054
0.7 27 20 18 1.2 053 041
0.8 3.2 1.7 14 1.3 0.62 0.29
0.9 2.4 1.8 1.5 070 064 —

related to the total work required to fracture
the specimen completely [17].
Therefore:

U
Yr® = T — o) (15)

vr® was calculated for all composite specimens
of every depth of cut. The results are summarized
in Table III. Most of the yx¢ values show a
consistent variation with ¢/d. The average over
the range of 0.2 < ¢/d < 0.6 was taken as the
final value of yi¢ for every c¢/d value. All
specimens of the pure matrix exhibited cata-
strophic fracture. The energy, as measured by
the area under the fracture curve was, therefore,
higher than the real value. In specimens with
deep cuts the fracture process became pro-
gressively less catastrophic and the values of U
for these specimens were close to the real value.
The final value of y ™ was determined by extra-
polating the results of each set of specimens,
with ¢/d values ranging from 0.1 to 0.9 to the
point ¢/d = 1. All the sets gave an average
of 0.3 kJ/m? The final results are shown in
Fig. 8.

5.2. yx°as afunction of V,

For the purpose of determining ¢ as a function
of V; it is possible that the same considerations,
used for the determination of a similar function
of y1® apply. As scanning electron microscope
studies of the fracture face prove that fibre
breakage does take place during the complete
process, a third term must be added to the
equation for y°. By analogy to Equation 12
we can write:

As Az
+ v ‘21 + v 2 (16)

Am

;},FC — ,yFm A

where Ay is the fibre surface area and A4¢/4 is
1305
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Figure 8 The experimental values of fracture surface
energy of the complete process yr¢ as a function of V1.

the fibre area fraction. While it is reasonable to
assume that Am/A and A4i/4 have the same
formsasin Equations 13 or 14, 4¢/A is determined
by the probability of fibre breakage during the
process. This probability itself depends on
various factors such as V: and the degree of
misalignment of the fibres.

In order to evaluate the contribution of the
fibre breakage to y° a determination of ygf
was carried out by measuring the tensile energy,
required to completely fracture a roving of the
glass fibres. A typical load-deflection curve is
shown in Fig. 9. The area under the curve is
equivalent to the total tensile energy. The value

70 I

40 _4
30~ 4
z
<= ® 1
10+ -
O L ) 1 L h 1 1 I L
[e] ol 0.2 03 04 05 0.6 07 0.8 09

§ (107%m

Figure 9 A typical load deflection curve for a glass-fibre
roving. U is the energy required to completely fracture
the roving.
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found for rovings containing 408 fibres of
7.6 x 10~%m radius was 0.23 J.

By substituting this energy value into the
equation yg! = U/24, v was found to be
1.6 MJ/m? y;! is thus some four orders of
magnitude greater than yy®. Therefore, even if

T T T T T T T T T
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Ve

Figure 10 (y1® — vr®) as a function of the volume fraction
of the fibres, and the ranges of catastrophic and con-
trolled fracture processes.

the probability of fibre breakage is very low,
the contribution of this process to the total
average surface fracture energy is still dominant.
It is obvious that the maximum contribution of
yr! to y5¢ occurs for V; values of about 0.45.
By neglecting the contribution of y® and yg!
at this V: value we find, that the approximate
value of the fibre area fraction, As¢/4 is 10~4.

6. The nature of the transverse fracture
process

By comparing the fracture curves of two com-
posites of different V; values (Figs. 2b and c),
it is possible to see that there is a change in the
degree of control of the process with V:. It is
clear that the nature of the transverse fracture
process is governed by the relation of y1° to
yr°. For y1° — y5® > 0 we expect a catastrophic
process and for y1° — yz¢ < 0 a controlled
process is observed. The magnitude of the
absolute value of y1° — ;°, determines the
degree of control. Fig. 10 shows the ranges of
controlled and catastrophic processes.

The fact that the probability of fibre breakage
and the contribution of y! to the value of yz°
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Figure 11 Scanning electron micrographs of transverse
fracture faces (x 280). (a) Vi = 0.27, wide zone of
fractured matrix between the fibre layers. (b) V: = 0.52,
narrow zones of matrix between the fibre layers.

are the crucial factors in determining the nature
of the process are further supported by scanning
electron microscope examinations of fracture
faces. Fig. 1la shows a micrograph of the
fracture face of a low V; composite. It is obvious

that the wide matrix zones between the fibre
layers show brittle fracture without any plastic
deformation. Figs. 11a and b shows that both
for low and high V; values the fibres separate
completely from the matrix. But, in spite of the
fact that the fracture develops parallel to the
fibres it is possible to find broken fibres in both
fracture faces. It also may be concluded that the
transverse fracture process is composed of two
simultaneous processes: one which is concerned
with the matrix only and is catastrophic, and the
other which concerns the fibres and the fibre-
matrix interface which is a controlled fracture
process. The nature of the overall process is
solely determined by V%.
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